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An Analysis of the Finite Element Method 
Using Lagrange Multipliers 

for the Stationary Stokes Equations 

By Richard S. Falk* 

Abstract. An error analysis is presented for the approximation of the statiornary 

Stokes equations by a finite element method using Lagrange multipliers. 

1. Introduction. The purpose of this note is to examine a finite element method 
using Lagrange multipliers for the stationary Stokes equations. Such a method is men- 
tioned in [4] although specific details of the analysis are not provided. In this paper 
we shall present an analysis from a different viewpoint and then obtain error estimates 

under different hypotheses than considered in [4] . A similar approach has been used 
in [9] to analyze a finite element method using Lagrange multipliers for a second order 

elliptic boundary value problem with Dirichlet type boundary conditions. Some other 
finite element methods for the problem we consider here can be found in [5], [6], [7], 

[8] and [13]. 
We will consider then the approximation of 
Problem (P): Find u = (ul, . . ., UN) and p defined on Q such that 

-Au + grad p = f in Q, 

div u = O in Q, 

u=O on 3, 

where u is the fluid velocity, p is the pressure, f are the body forces per unit mass, and 
v > 0 is the dynamic viscosity. 

The approach we will take is to consider Problem (P) in the following form. Let 

a(u, v) denote the bilinear form 

N a- a- 

and (u, v) the [L2(Q)] N inner product fI uZ* v dx. We then seek a function p E 

L2(2) such that 

(div u i(p), q) = 0 for all q E ? 2), 

where u(p) is the unique solution in [Hzo(?)] N of a(u(p), v) = (f - grad p, v) for 
all v E [Ho' (2)] N. It is easy to show that (u (p), p) solves Problem (P). 
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The approximation scheme is then 
Problem (Ph): Find Ph E Th (Q) such that 

(1) (div Uh(ph), qh) = 0 for all qh E Th ) 

where u'h(ph) is the unique solution in [Th (Q)] N of a(uT(ph), vi,) = (f - grad Ph, 

Vh ) for all Vh E [Th 1 (QN] [Th 1 ) N and Th 2(Q) are finite dimensional subspaces 

of [Ho(E2)]N and L2(Q), respectively, and will be defined later. 
We note that these equations can also be obtained by applying the method of 

Lagrange multipliers to the constraint div v = 0. 
In the next section we describe the notation and principal ideas to be used in the 

derivation of the error estimates. 

2. Notation. Let Q be a bounded domain in RN with smooth boundary M?. 

For m a nonnegative integer, let Hm(2) denote the Sobolev space of order m of func- 

tions defined on Q with norm 

IIvllm = ( I! I!Daul ), where IIu!I1 = lIullL2(l)l 

Let HI (Q) denote the Sobolev space of functions in H1 () which "vanish" on M. 

For vector-valued functions v = (v1, . . ., VN) let [Hm (Q)] N be the space of v 

with components vi E Hm (&) and let 

/N 1/12 

m ( 1 ElViIlm 

Finally, for convenience, define iiiE = a(v, v We remark that vI I3IE is a norm 

on [Ho ()] N equivalent with the ll v lli1 norm. 
The following facts will be needed in the derivation of the error estimates. 
LEMMA 1 (SEE TEMAN [13]). Let Q be an open set of class CS, s> 2, and let 

f E [Hs- 2(Q)] N and g E Hs 1 (Q) be given with fIQ2 g dx = 0. Then there exist 

unique functions u and p (p is unique up to a constant) which are solutions of the 

generalized Stokes problem 

-, -o 

-v A?u + grad p = f in Q, 

div u = g in Q, 

u =O on a ?, 

and satisfy <E [H()]N p E H`-1(2), and the estimates 

I Ulls + II P"Is-1/ R < CO {I f ls-2 + 11 gis-1 1} S > 1, 

where CO is a constant depending only on v-, s, and Q. 

(I Pls- 1 /R cieRnf P + c|IS-1) 
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LEMMA 2 (E.G. SEE [12]). Let w (p) be the weak solution of the equation 
- vAw(p) =-grad p with boundary condition w = 0. Then if gradp C [L2(Q)IN, 
w ( p) C [H2(12) N and 11w (p)I2 ? C11grad lgap1l where Cisa constant independent of p. 

LEMMA 3. Let w(p) be the weak solution of the equation - 'Aw (p) = 

- grad p with boundary condition w(p) = 0. If p C L2(Q)/R, then w( p) C [Ho(&2)]N 

and IIPII/R ? ClIIiW(p)IIE ? C2IIPII0/R for some constants C1, C2 independent of p. 
Proof 

IIPIlOR inf lip ?+ clO < IIP - C 110 

(where c- = (,u(E))-yfnp(x)dx and ,u(2) denotes the measure of 2). Let (z, 4) be 
the solution of the generalized Stokes problem 

-Az?+ grad 4 = O in Q, 

div z = p - c in E2, 

z =O on 32. 
Then by Lemma 1, z exists and is unique, and satisfies I1Iz Clip - clII for some 
constant C independent of p. Hence 

llP- CIIO?(p-C, div )=(- gradp, ) 

= a(w (p), Z) < IIW (P)IIE IIZDE 

< CII W (P)IIE 11 P - C 110 

Hence, jI pIIo0R < ClW (P)IIE. Also, 

II IE = (grad p, w(p)) - (grad [p + c1, w(p)) (for all constant c) 

= (p + c, div w(p)) S II p + clIoll div w(p)110 S (VN/v)IIP + CIIOIIW(P)IIE. 

Hence, IIW(P)IIE ? CIIPhOI R- 

We now introduce the finite dimensional subspaces we will be using in our approx- 
imation scheme. Following Babuska [4], we will define for all 0 < h < 1 a one-param- 
eter family of finite dimensional subspaces which we will denote Sh' k(p) We call 

Shtk(Ei) a (t, k)-system for t > k > 0 if 

(Al) Shtk(E2) C Hk(Q2). 
(A2) If p C H'(2) and 0 < s < k S 1, then there exists qh C Stk(&2) such that 

11 - Oh ls S ChMIA1 011, where , = min(l - s, t - s) and C does not depend on s, h, or 
4. Note that the function Oh may be different for different s. 

If the function Oh can be chosen independently of s, then the system will be 
called regular. We say that the regular system Sh, k(E) is strongly regular if its mem- 
bers satisfy 

OhIls <C'h (S m)I 1OhIlm for 0 < m ?s ? k. 

One final hypothesis that such systems may satisfy which we will require is 
(A3) For 4 EC H'(&2) n Ho(Q), (A2) is satisfied by a Ch e Sht'k(2) n Hof(l ) 

Systems satisfying these various hypotheses are constructed in [1] and [2]. 
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We now proceed with the derivation of the error estimates. 

3. Error estimates. 
THEOREM 1. Suppose f e [Hr -2(Q)I N and u= u(p) is the solution of Problem 

(P). Let uh(Ph) be the solution of Problem (ph) with Th (2) a (t1, k1)system satis- 

fying (A3) and Th (Q) a strongly (t2, k2)-regular system with t1 > 2, k, > 1, and 

k2 > 1. If h2 > Kh 1 for K sufficiently large (K a constant independent of h 1), then 

there exists a constant C inidependent of h and u such that 

IIU(P) -uh(ph)Il + IIP -Phil 2 R Ch 2llf IIr-2 

where h = max(h1, h2) and ,u = min(r -1, t1 - 1 ,t2). 
Proof. Since u ikp) is the solution of Problem (P), (div iu(p), q) = 0 for all 

q ? L2(Q). By (1), (div Uh(Ph), qh) = 0 for all qh ? Th (Q). Hence 

(div [u(p)- uh(Ph)I , qh) = 0 for all qh ? Th2(Q)- Now 

U(p)- uh(Ph )IIE a((p) - Uh(Ph), U (p) U(qh)) 
II' h Ph E a - h(Ph) iq) - '(Ph)) 

? a(u ( p) - Uh (Ph), U( qh) - U(Ph)) 

+ a( ( p- Uh(Ph ) U (P) h( Ph ))' 

We first observe that 

a(u-(p) Uh(Ph), U(q) - (Ph)) (grad (Ph qh), U (P) -Uh(Ph)) 

(Ph - qh, div [ u(p) - uh (PhA] = 

by the result obtained above. Applying the Schwarz inequality to the remaining two 

terms and collecting terms, we obtain 

2 I U (p) - Uh (Ph )IE U II(P) - (qh )E + I (Ph) -h (Ph)I E- 

By Lemma 3, IIU(P) - iU(qh)IIE < CIIP - qhIlO. Hence, we obtain 

- ( h(Ph)IIE < C[IIp - qhIO ? Iu (Ph) - uh(Ph)IIEI 

Now by Lemma 3, 

IIP - PhIlOIR < CIIU(P) - U(Ph)IIE 

? C [Iu (p) - Uh(Ph)IIE + II h(Ph) 
- 

'(Ph)IIEI- 

Combining these results, we get 

(2) IIU(P) - Uh(Ph)IIE + IIP - Ph10/R < C[Ij- qhIII ? II(ph) -uh(ph)IIEI. 

Using the approximation assumption (A2), the first term on the right of (2) is 
bounded by Ch'92 where /2 = min(r - 1, t2). In order to estimate the second term 
we need to make use of the strong hypotheses we have made in the theorem about the 
approximation properties of the subspaces and their relationships. Now 
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llU(pb) U2>b(pb)llE S11 [~U(ph) - U(p)] [ (Ph) U(P)IlIE + II() Ub()IIE. 

Since 

a(u(q) - u,(q), z) = 0 for all Zh [Tb(fi)] 

we have for all Zh and v+ C [T (2)]N that 

llu (Pb) - U(P)llE ? lIu (Pb) - (p) -Zbl'E + llu(p) -VblE 

< Ca1 llU(p,h)- + Ch 1 11 U?(p)ll,, 

where 'ul = min(r - 1, t -1) (by using (A2)). 
Now 

11U (Pb) - UNp)ll2 ? C grad (p - Pb)IIO (by Lemma 2), 

S CII grad (p - Ph - c)110 (for all constant c) 

? Cllp -Ph -Cell S C[llp -qhlll + llqh -Ph eil] 

S C [i1p - qhlll + Ch- 11 qh -Pb - Ce-i] (by strong regularity) 

? C[llp - qblll Ch2 Plhq - P11 + Chy1l I -P -Celi]. 

Applying the approximability assumption (A2), we obtain 

II '(Ph) - Uh(Ph)lIE S ChC [h22'IIPIIr 1 + ChII I-Pb -cOII] + Chhil |lu (P)Ilr 

h1 h22 11 PI 1+ CK-IIp Pb Ph- CIlo + Chi' 1II (pP)IIr 

Hence, 

11U(Ph)-Ub(Pb)IIE < Ch1h2 h 1IPIr1 + CK1llp P bIIOR + Ch'IlIiU(p)lIr 

(since the previous equation held for all constant c). Since 11 PIIr_ 1and llui(P)llr are 
bounded by CIl flr- 2 by Lemma 1, we have after collecting terms that for K suf- 

ficiently large 

h(p) - b(Pb)IIE + IIP - PhllO/R 2 C[h ? hh21 ? h'l If llr2 

The theorem follows by setting h = max(h1, h2). 

THEOREM 2. Suppose f C [Hr 2(I)]N and u= u(p) is the solution of Problem 
(P). Let Uh (Ph) be the solution of Problem (Ph) with Thb (Q) a (t1, kj )system satis- 

fying (A3) and Th (Q) a (t2, k2)-system with k1 > 1, k2 > 0. (Note that Th2(2) 

need not be strongly regular.) If there exists V C [Th (Q)]N with (div v qb) = 0 

for all qh E Th 2(Q) such that 

thU - e 1n < C IIU(P)II, 

then 



246 RICHARD S. FALK 

IIui(p) - Uh(Ph)IIl < ChIf lilrI2' 

where ,u = min(r - 1, ,1A t2) and h = max(h1, h2). 
Proof. Using the same argument as in Theorem 1, we have 

||U (p) Uh(Ph)IIE u a((p) - Uh(Ph), u (p) - (qh)) 

+ a (u (p) - Uh (Ph)) U (Ph) -U h (Ph))- 

Since a(F , *(Ph) -h(Ph)) = O for all Zh ? [Th , it follows that for all vh ? 

[Th (Q)] N, 

a(u (p) - Uh(Ph), U (Ph) - Uh(Ph)) a(-u(p) - Vh, U (Ph) - Uh(Ph)) 

= a(u(p)-Vh, - u(p)) ? a(u(p) - , u - Uh(Ph)) 

=(u (p)- hVh, 
grad (P Ph)) + a(u Vh, U (p) - Uh 

=(div [u() h,P p) + a(u (p) Vh () *P) 

? a(~~~~(p) - ~ ~ u() -VhpU)P - =(div [u() vh, h qh) + (div [u (p) -h] qh P) 

+ a(u ( p) - Vh, U ( p) uh ( Ph)) . 

Since div -ui(p) = 0 and Ph -Qh ? Th(Q), we have for all ?> C [Th (E?)IN with 

(div vh, qh) = 0 for all qh ? Th (Q) that 

ll4U(p) -h(Ph)IIE a(u(p)- Uh(Ph), u(p) UC 

? (div[u(p)-iI 1,qh -p)? a(u( p)- p) UP U 
h(Ph)) 

S IIU(p) Uh(Ph)IIEIIU(P) - (qh)llE + lldiv[u(p) - Vh]ilIIq, - Ph1 

? llJ(P)- vhIIEIIU(P) -h(Ph)IIE. 

Applying the arithmetic-geometric mean inequality and Lemma 3, we obtain 

IIU(P) - Uh(Ph)IIE < C[IIt(P) - ?h II qhIO 

< ChII2II_ pll ? + ChM2211tp)IIr 

(by (A2) and the hypothesis of the theorem), where "2 = min(r - 1, t2). Hence, 
applying Lemma 1, we obtain 

II(p) - Uh(Ph)IIE < Ch II f llr2, 
where , = min(r - 1, Al t2) and h = max(h1, h2). 

Remark 1. One easy application of Theorem 2 occurs in the following case. Sup- 
pose Q is a convex polygon in R2. Although the regularity result of Lemma 1 no 
longer applies, we know by a recent result of Kellogg and Osborn [101 that if f e 
[L2(Q)] 2 then u (p) ? [H2(?)] 2 and II<(P)II2 S CII f 110. Suppose we construct a 
triangulation A of Q and define Th (Q) = {v: v is continuous on Q, quadratic on each 
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triangle K of A, and zero on 3f?} and 

Th2(?) = {q: q is constant on each triangle K of A}. 

By a result in [5], there exists an element vh C [Th (Q)] 2 such that 

(3) (div vh, qh) = O for all qh C Th2 (2) 

and iIu(p) - v1l < Ch (P)II 2. Hence, by Theorem 2, 

IIu(P) - Uh(Ph)IIl < ChIflII0 

The key point is that not all the elements of [Th (Q)] 2 have to satisfy (3). As long as 

one element does, we get the error estimate. 
Remark 2. In the case described in Theorem 2 (i.e. without the inverse assump- 

tion and relation between the mesh sizes), it is no longer necessarily true that Ph will 
be unique in L2(Q2)/R. However, it is easy to verify that if there is any solution Ph to 
Problem (Ph), then Uh(ph) exists. Furthermore, if Ph, Ph are two solutions of Problem 
(Ph), then (ph) = Upa). We have 

II-- (pl) - p2u112 (u() 2 (2_p) Uh(h) UhPhE =Uhh uh(Ph), grad(p -h ) 

- (div [U (pt) - i(p2)], pl - p2) = ?, 

since (div UhPh), qh) = 0 for all qh EC Th2(i), k 1, 
The above result also gives us uniqueness of Uh (Ph) in the case of Theorem 1. 

The existence and uniqueness of Pn (in L2(&2)/R) are easily proved under the hypoth- 
eses of Theorem 1. By Lemma 3, 

ll,4, 
- 41o/ C 11 -(p 1) - *p 
-PhhI0/R < Cllu (Ph)-u (iD)IIE 

= CIIiU(Ph)- U(P)- [hUh4 ) -Uh(Ph)I IIE 

? CIIiu(pa) - u(Ph) - IIE for all Z E [TTh(S)I 

(since a(u`(q) - uh(q), vh) = 0 for all C* E [Th (Q)] N) 

< Ch 1II'u(Ph) - U(ph)II2 (by (A2)) 

< Ch1IIgrad(p4 - Ph,)II0 (by Lemma 2) 

< Ch1I grad(Ph - ph - c)II1 (for all constant c) 

? (Ch1flh2)IIpa - ph - clo (by strong regularity). 

Hence, 

h h /R R< CK Ph -hIO/R 

which implies that for K sufficiently large II ph - P2 IIO/R = 0 
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By an extension of the duality argument we have the following estimates for the 
error in [L 2 (2)] N. 

THEOREM 3. Under the hypothesis of Theorem 1, 

II' h(p)- (Ph)IIo < Ch 1'IIfIIr-2) 

where ,=min(r-1, t1 -1, t2) and h = max(hl, h2). 
Proof. Let (w, Q) be the solution of 

- vLw + grad Q = u (p) - uh(Ph) in Q, 

div w=O in 2, 

w=O on M. 

Then, 

II'(P) -h (P')IO = (U(p) h(Ph)' - ?AW + grad Q) 

= a(u (p) - Uh(Ph), W) - (div [u(P) Uhb(Ph)I, Q)* 

Now by the definitions of u( p), U(pb) we have 

a(u (p) - - (grad Ph - V- , (P Pb' div v) 

for all I [T,l(2)]N and (div[u(p) - Uh(Ph)I, qh) = O for all qh E Tbh2(Q). 

Subtracting, we obtain 

UI(P) -U(ph)IIg = a(u(p)- U-(Pb), W - 

- (div [u*(p) - _Uh (PhA) Q - ql) + (P Ph, div [v VI ) 

< IIU(P) - Uh(Ph)IIEII W - VbhIE I II div [h((P) Ph(PA)I 110 11 Q qb0 

? IIp Phlb /R ldiv [Vb - wI]|| 

< ChAIfIIr _2 - Ch1I 1W 2 + ChMIfIllr -2 Ch2II QII1 

+ ChMlf I.Ir 2Ch1 11WI12 (by Theorem 1 and (A2)). 

Since IIwI12 + IIQII1 < ClIu(p) - uh(Ph)IIO by Lemma 1, we have upon collecting 
terms that 

II'(p)- Uh(Ph)IIo < ChM+lf lIr-25 

where ,u=min(r-1, t1 - 1, t2) and h = max(hl, h2). 
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